
A Rigorous Derivation of the Bubble Sort Curve

Michael DiFranco

March 2024

Abstract

Sorting algorithms are often visualized by videos of bar plots or scatter
plots whose elements are gradually sorted by height. When bubble sort
is displayed in this way, the plots appear to approximate a curve. We
formalize this observation by developing a precise definition of what it
means to say that a sorting algorithm’s scatter plots approach a shape.
We then prove that bubble sort approaches a specific shape comprising
a diagonal line and the region under a hyperbola. Our definitions and
proofs use tools from elementary analysis and probability theory.

1 Introduction

It is common to visualize sorting algorithms with videos of two-dimensional
diagrams where the items in the list are represented by objects which are sorted
according to their height. The most common of these are bar plots and scatter
plots. (See Figure 1) Regardless of the specific representation, these videos
reveal that certain algorithms “shape” the data in certain ways as they run.
For most algorithms, the shapes of the diagrams are obvious to anyone with a
working understanding of the algorithm. But that is not the case for bubble
sort.

Bubble sort is one of the simplest sorting algorithms. It involves repeatedly
scanning across the list and swapping adjacent items whenever they are out of
order. When bubble sort runs on a large, uniformly shuffled list, its diagram
forms a distinct curve. (See Figure 2) However, it is not so clear why this
particular algorithm should appear as a curve, and it is even less clear what

Unsorted Sorted

Bar Plot

Unsorted Sorted

Scatter Plot

Figure 1: The bar plot and scatter plot representations of a list of 7 items

1

0% Sorted 10% Sorted 25% Sorted 50% Sorted

Figure 2: A list of 500 items at different moments in the execution of
bubble sort, along with the shapes the the diagrams approximate.

exactly this curve is. It is possible to intuitively derive a formula for the curve
without too much hassle, but we would need to lean on a handful of assumptions,
as well as an overly vague notion of what it means to say that the diagrams
approach a shape. This paper is not devoted to such a casual approach, but
rather to a rigorous formulation and proof of the problem.

We will interpret the scatter plot representation of bubble sort as a finite set
of points in three dimensions (Two dimensions x and y for space, one dimension
t for time). We will formulate a precise definition of what it means to say that
a sorting algorithm’s diagram approaches a shape (Definition 8). We will then
prove that bubble sort does indeed approach a shape as per our definition. In
particular, we will prove that the diagrams approach the set{

(x, y, t) ∈ [0, 1]3 : y ≤ x

x+ t
, x ≤ 1− t

}
∪
{
(x, x, t) ∈ [0, 1]3 : x > 1− t

}
.

The shapes in the bottom of Figure 2 are t-cross sections of this set with t values
of 0, 0.1, 0.25, and 0.5.

1.1 A Brief History

The problem of efficiently sorting lists is an important and extensively researched
topic in computer science. Since the mid 20th century, a multitude of differ-
ent sorting algorithms have been invented. Bubble sort entered the scene in
1956 when it was described by Edward Friend, who noted that other simpler
algorithms, such as insertion sort, outperformed it [3]. Despite some subsequent
refinements, it was never able to overcome this first impression. Notably, Knuth
gave a detailed analysis of its performance in 1973, with the conclusion that,
“bubble sort seems to have nothing to recommend it, except a catchy name and

2

the fact that it leads to some interesting theoretical problems” [5]. (The shape
of the algorithm’s visualizations likely was not one of the interesting theoretical
problems on his mind.) Therefore, from a practical point of view, bubble sort
has been fully understood for decades. But despite its absence from real-world
applications, it is a classic, almost always making an appearance in sorting
algorithm visualizations.

Sorting algorithm visualizations have been around at least since 1981, when
Ronald M. Baecker produced Sorting out Sorting [1]. This film showcases the
bar plot and scatter plot representations of several sorting algorithms, includ-
ing bubble sort. Since then, as computers became orders of magnitude more
powerful, the number of programs devoted to algorithm visualization rapidly
increased. Today, the largest platform for these videos is likely YouTube, where
users have been uploading visualizations since late 2006. Some of these videos
have gone viral, accumulating millions of views, and thereby exposing sorting
algorithm visualizations to many who otherwise have no connection to computer
science. Additionally, interactive real-time visualizations are readily available
on the web, and there are even mobile apps purely dedicated to visualizing
sorting algorithms.

But despite the popularity of these visualizations and the research that has
gone into the algorithms they represent, there seems to have been no serious
mathematical analysis of the these visualizations themselves. Discussion of the
shapes of they produce is confined to casual video comments and internet fo-
rums, where the question of the bubble sort curve has been proposed, but seem-
ingly not given enough thought for a proper answer.

1.2 Bubble Sort

Bubble sort works by scanning across the list from left to right, comparing two
adjacent items at each step. If at any step the left item is greater than the right
item, the two items are swapped. This process is repeated until the entire list
is sorted. The algorithm can be represented in pseudo-code as follows:

int N = list.length();

for (int i = 0; i < N - 1; i++) {

for (int j = 0; j < N - 1; j++) {

if (list[j] > list[j + 1]) {

list.swapItems(j, j + 1);

}

}

}

This is an interpretation of the original algorithm [3], though it is the least
efficient interpretation possible. Implementations of bubble sort typically in-
clude some common-sense optimizations which reduce redundant comparisons.
But since we are only concerned with the shape that the diagrams make, we do
not care about performance, and this simple version is the most sensible for our
purposes.

3

Note that we use the convention of 0-indexes lists (The first item is in index
0). We will call each execution of the outer loop an iteration. We will often
refer to a list at I iterations. When we do so, we are referring to the state of the
list immediately after the Ith execution of the outer loop. In the code above,
we run N − 1 iterations. We will show that this is the minimum number of
iterations required to guarantee that the list is sorted (Corollary 2). But rather
than taking the most direct route to this fact, we will first introduce the notion
of a Greatest So Far (GSF) item.

Definition 1. Consider a list at I iterations. If the item in index n is greater
than or equal to the item in index m for all m < n, then we call the item in
index n a Greatest So Far (GSF) item, and we all n a GSF index.

GSF indexes are important because the behavior of the algorithm during an
iteration is completely determined by which items are GSF.

Theorem 1. Given a list of N items, let g0, g1, · · · , gk be all the GSF indexes,
ordered from least to greatest. Over the next iteration,

• For all m < k, the item in index gm will move to index gm+1 − 1.

• The item in index gk will move to index N − 1.

• For every non-GSF index n, the item in index n will move to index n− 1.

Proof. We will track the variable j in the pseudo-code above. Whenever the
item in index j is greater than its successor, a swap will occur and it will move
to index j+1. But then the value of j will increment, so the item will again be
in index j for the next execution of the inner loop. Therefore, by induction, this
item will repeatedly move to the right until it directly precedes an item which
is not less than it. It will not be swapped with this other item, so there it will
rest.

Now, consider a GSF index gm with m < k. Since the item in index gm
is greater than or equal to all the items before it, it will not be swapped with
its predecessor when j = gm − 1, so j will increment to gm and our item will
find itself in index j. As described above, it will then move to the right until it
directly precedes the first item which is not less than it, which is the next GSF
item by definition. Thus the item in index gm moves to index gm+1 − 1.

For gk, the same process occurs, but there is no next GSF item to stop the
item from moving all the way to the end of the list and resting in the final index,
N − 1.

Finally, every non-GSF item is passed by a GSF item on its way to its new
location. When the two items are swapped, the GSF item moves to the right
and the non-GSF item moves to the left, where it stays.

Corollary 1. After I iterations, the largest I items are sorted in their final
positions, which are the largest I indexes of the list.

4

8 6 1 4 7 10 5 2 9 3

6 1 4 7 8 5 2 9 3 10

1 4 6 7 5 2 8 3 9 10

Figure 3: The movement of items during the first two iterations. At each
iteration, the GSF items are underlined. This illustrates the behavior
described in Theorem 1.

Proof. Note that, for any M , the largest item of the first M items is GSF, and
it is the last GSF item of these first M items. We can now prove the corollary
with a simple induction argument.

Assume that at I iterations, the largest I items are sorted in indexes N −
I,N−I+1, . . . , N−1. Clearly each of these indexes is GSF. Then, the (I+1)st
largest item is the largest of the first N−I items, which is in the last GSF index
of these items. Therefore, by Theorem 1, over the next iteration the (I + 1)st
largest item moves to index N − I − 1, and all the larger items do not move.
Thus at I + 1 iterations the, largest I + 1 items are sorted in the I + 1 largest
indexes of the list.

For the base case, note that the largest item in the list is the last GSF item,
so after the first iteration, it will be moved to index N − 1 by Theorem 1.

Corollary 2. It takes N − 1 iterations to guarantee that a list of N items is
sorted.

Proof. By Corollary 1, the largest N−1 items will be sorted at N−1 iterations,
leaving only the smallest item. But then there is only one place left for the
smallest item, so it cannot be in the wrong place, and the whole list must be
sorted.

To prove that it takes no less than N − 1 iterations, recall that an item can
move no more than one space to the left per iteration. Therefore, if the smallest
item starts in index N − 1, it will take N − 1 iterations to move it to its correct
index of 0.

Because of Theorem 1, we are able to analyze the behavior of algorithm
purely mathematically, without ever again having to step through the code.
Corollary 1 shows that at every point in time, the diagram is split into two dis-
tinct sections: the fully-sorted section on the right, and the unsorted section on
the left. We will end up analyzing the shape of each of these sections separately.

5

1.3 Mathematically Describing Diagrams

The width, height, and duration of the videos are completely arbitrary, so we
will normalize them. Our diagrams will be one unit wide, one unit tall, and
will run for one unit of time. We will also stipulate that each iteration takes
the same amount of time. To be specific, our diagrams will fit in the unit cube
[0, 1]3. We will represent each point in the diagram with the coordinates x, y,
and t, where t represents time.

Our specification that each iteration takes the same amount of time is only
loosely accurate for the simplest and least optimized version of the algorithm.
And even in that case, the number of time-consuming swaps is not the same
for every iteration. However, this slight departure from reality is well worth
the simplicity, and one can simply transform the time dimension of the final
shape to account for more optimized versions of the algorithm. If you are still
uncomfortable, you may interpret the t dimension as “progress”, rather than
“time”, thereby sidestepping any issues of how long each iteration takes.

Although sorting algorithms can act on any type of data that can be ordered,
we will restrict ourselves to lists of real numbers in the range [0, 1] so that
each item in the list is a valid y-coordinate in the diagram. For the other
two coordinates, we can spread the points evenly. The point corresponding to
the item in index n at I iterations will have an x-coordinate of n/N and a
t-coordinate of I/N . For simplicity, we will not plot the points at each step
within an iteration, but little would change if we did.

It will be useful to define a function which gives the number in a certain
index of the list at a certain iteration:

Definition 2. Given a list of N items, the height function of the list is

H(n, I) = the number in index n of the list at I iterations,

where n, I ∈ {0, 1, 2, . . . , N − 1}.
We call this the height function because it gives the height of a point in the

list’s diagram. To be clear, this is not one single function. It only exists in the
context of a list, and each list will have its own height function. The same is
true for the diagram, which we will now define.

Definition 3. Given a list of N items, the diagram of the list is the set

D =

{(
n

N
,H(n, I),

I

N

)
: n, I ∈ {0, 1, 2, . . . , N − 1}

}
.

Our goal is then to prove that if the lists are generated in a “uniform” way,
then the set D will tend to “converge” to a certain connected set as the length
of the list increases without bound.

1.4 Uniform Methods of Generating Lists

We have to specify how the lists are generated, because the method of generating
the list could conceivably alter the shape that the diagram forms. In this section,

6

we will define a what it means to generate a list uniformly. We will then assume
for the rest of the proof that the lists are generated in such a way.

To be specific, we define a “method of generating lists” as an infinite sequence
of random processes – one for each natural number N – such that the N ’th
random process generates a list of N items. For example, one of the simplest
methods of generating lists goes like this:

To generate a list of N items, randomly choose N independent real
numbers uniformly from [0, 1].

We will call this the real number method. However, the most common way of
generating lists for these visualizations is as follows:

To generate a list of N items, list the natural numbers 1 through N .
Shuffle the list randomly, then map each number n to n/N .

We will call this the natural number method.
There are infinitely other methods that we might concoct, and not all meth-

ods will yield the same shape. For example, the trivial method of setting every
item to 0 will just form a horizontal line at y = 0, no matter what algorithm is
run. To exclude such cases, we will only consider lists which are generated uni-
formly. Loosely speaking, a method of generating lists is uniform if the points
are uniformly spread over the unit square. To phrase this more precisely, we
will use the standard notion of convergence in probability.

Definition 4. A sequence of random variables Z0, Z1, Z2, · · · converges in prob-
ability to a random variable Z if, for all ε > 0,

lim
n→∞

P (|Z − Zn| < ε) = 1.

We express this by saying Zn
p→ Z as n → ∞.

Definition 5. Consider a method of generating lists. Let R be an arbitrary
rectangle contained in the unit square. Call the area of this rectangle A. Given
a natural number N , let the random variable ZN represent the number of points
in the initial state of the list which are inside R. The method of generating lists
is uniform if

ZN

N

p→ A as N → ∞

for every possible choice of R.

Convergence in probability is well-suited for the definition of uniformity. But
for the arguments ahead, it will be more convenient to use a different shorthand
to capture probabilities.

Definition 6. Let ϕ be a statement that makes sense in the context of a list.
Given a method of generating lists, we define PN (ϕ) to be the probability that
ϕ is true of a list of N items generated with the method.

7

We will be particularly concerned with cases in which limN→∞ PN (ϕ) = 1
and in which limN→∞ PN (ϕ) = 0. We will say that such statements ϕ become
arbitrarily likely or arbitrarily unlikely, respectively. If finitely many statements
are arbitrarily likely, then so is their conjunction. Likewise, the disjunction of
finitely many arbitrarily unlikely statements is arbitrarily unlikely.

We will rephrase our definition of uniformity a bit more precisely in terms
of arbitrarily likely statements.

Definition 7 (Equivalent to Definition 5). Given a list and four numbers
x0, x1, y0, y1 with 0 ≤ x0 < x1 ≤ 1 and 0 ≤ y0 < y1 ≤ 1, let

Z =
∣∣∣{n ∈ N : x0 ≤ n

N
≤ x1, y0 ≤ H(n, 0) ≤ y1

}∣∣∣ .
A method of generating lists is uniform if, for any such x0, x1, y0, and y1, and
for any ε > 0,

lim
N→∞

PN

(∣∣∣∣ZN − (x1 − x0)(y1 − y0)

∣∣∣∣ < ε

)
= 1.

The number Z in this definition is one particular instance of the random
variable ZN in Definition 5. Note that the boundary of the rectangle, having no
area, does not factor into this definition. Therefore, our use of closed rectangles
was arbitrary. This definition would have been equivalent had we chosen open
or partially open rectangles, as we will in Section 3.

Indeed, the real number method and the natural number method are both
uniform. We will prove this in section 4. Until then, we will simply assume we
are dealing with uniform methods, and the specifics of the methods will not be
relevant.

1.5 Mathematically Defining the Problem

The statement that bubble sort diagrams converge to some curved shape is
vague, so we must translate it into a precise mathematical statement. In this
section we develop a definition that captures this phenomenon, while assuming
as little as possible about the nature of the specific sorting algorithm in question.

When we see the diagrams approaching the shape of some set S, we are
loosely observing that the points in the diagram tend to “fill up” all of S, and
that no points lie far outside of S. This can be captured more precisely with
the following criteria: The diagrams approach the shape of S if, as N → ∞,

• It becomes arbitrarily likely that every point in S becomes arbitrarily close
to a point in the diagram, and

• It becomes arbitrarily unlikely that there is a point not in S which is
arbitrarily close to a point in the diagram.

This is essentially the definition we will use in this paper. However, a more
precise definition will be useful:

8

Definition 8. Consider a uniform method of generating lists. A point X0 is
included if for all ε > 0,

lim
N→∞

PN (There is a point X ∈ D such that |X0 −X| < ε) = 1.

A point X0 is excluded if there is an ε > 0 such that

lim
N→∞

PN (There is a point X ∈ D such that |X0 −X| < ε) = 0.

If every point in [0, 1]3 is either included or excluded, then we say that the
bubble sort diagrams approach the set of included points.

At this moment it is not guaranteed that the bubble sort diagrams approach
any shape at all, since the limits may not converge, or they may converge to
values other than 0 or 1. Indeed, there are other sorting algorithms where this is
the case. For example, if we were to instead analyze quicksort [4] we would find
that most points in [0, 1]3 are neither included nor excluded. This is due to the
fact that quicksort operates by selecting one of the list’s random items as a pivot
about which it splits the list, causing the diagram to have different proportions
each time it is run. Fortunately bubble sort has no such issue, and since this
paper is concerned with bubble sort, we will leave the topic of quicksort here.

There are a couple of simple theorems about included and excluded points
which will be useful for our analysis, so we will prove them here.

Theorem 2. The set of included points is closed.

Proof. Let X0 be a limit point of the set of included points. For every ε > 0,
there is an included point X1 with

|X1 −X0| < ε.

Since X1 is included, we can let ε′ = ε− |X1 −X0|, and then

lim
N→∞

PN (There is a point X ∈ D such that |X1 −X| < ε′) = 1.

But if |X1 −X| < ε′, then

|X0 −X| ≤ |X0 −X1|+ |X1 −X|
< |X0 −X1|+ ε′

= ε,

So
lim

N→∞
PN (There is a point X ∈ D such that |X0 −X| < ε) = 1.

Therefore, every limit point of the set of included points is itself included.

Theorem 3. If S is an open set such that

lim
N→∞

PN (X0 ∈ S for some X0 ∈ D) = 0,

then every point in S is excluded.

9

Proof. Since S is open, for every X0 ∈ S there is ε > 0 such that X ∈ S if
|X − X0| < ε. Therefore it becomes arbitrarily unlikely that there is a point
X ∈ D such that |X−X0| < ε.

2 The Sorted Section: x > 1− t

We will first prove that if x > 1− t, then the point (x, y, t) is included if x = y,
and it is excluded otherwise. We will also prove that if x = 1 − t and x > y,
then the point is excluded. This is not the main attraction – the shape of this
section of the diagram is rather obvious. It is clear from Corollary 1 that this
section of the diagram is sorted, and for a sorted list to approach anything other
than a diagonal line would suggest that the list was not generated uniformly.
However, since we have constructed a specific definition of what it means for
the diagrams to approach a shape, we are bound to prove that our definition is
satisfied.

To start, we will define a function which represents the sorted list.

Definition 9. Given a list of N items, the F function of the list is is given by

F (n) = the item in index n after the list is fully sorted,

where n ∈ {0, 1, 2, . . . , N − 1}.

It is useful to restate Corollary 1 in terms of this function:

Theorem 4. Consider a list of N items at I iterations. Let n ≥ N − I. Then

H(n, I) = F (n),

and if m < n, then
H(m, I) ≤ F (n).

As stated above, it is obvious that the sorted list will look like the diagonal
line y = x. The next lemma puts this precisely by proving that if the x-
coordinate of a point on the sorted list is close to some value, then the y-
coordinate will be close to that same value.

Lemma 1. Let 0 ≤ x ≤ 1 and consider a uniform method of generating lists.
For all ε > 0,

lim
N→∞

PN

(∣∣∣ n
N

− x
∣∣∣ < ε

2
=⇒ |F (n)− x| ≤ ε

)
= 1.

Proof. First, we will show that

lim
N→∞

PN

(n

N
− x <

ε

2
=⇒ F (n)− x ≤ ε

)
= 1. (1)

10

ε

2εx

x

Figure 4: An illustration of Lemma 1. All the points
(
n
N , F (N)

)
which

are between the dashed lines are in the shaded region.

If x+ ε ≥ 1, then F (N) ≤ 1 ≤ x+ ε, so (1) is trivially true. Therefore we will
assume that x + ε < 1. Given a list of N items, let k be the number of items
which are less than or equal to x+ ε. Then

F (n) ≤ x+ ε for all n < k. (2)

But clearly, k is the number of points which are in the rectangle [0, 1]× [0, x+ε]
in the initial state of the list. Therefore, by Definition 7,

lim
N→∞

PN

(∣∣∣∣ kN − (x+ ε)

∣∣∣∣ < ε

2

)
= 1. (3)

But |k/N − (x+ ε)| < ε/2 implies that k > N(x+ ε/2), in which case n < k for
all n < N(x+ ε/2). Therefore, (2) and (3) imply that

lim
N→∞

PN

(
n < N

(
x+

ε

2

)
=⇒ F (n) ≤ x+ ε

)
= 1,

which is equivalent to (1).
Now we will use a symmetrical argument to show that

lim
N→∞

PN

(n

N
− x > −ε

2
=⇒ F (n)− x ≥ −ε

)
= 1. (4)

If x− ε ≤ 0, then F (N) ≥ 0 ≥ x− ε, so (4) is trivially true. Therefore we will
assume that x − ε > 0. Given a list of N items, let k be the number of items
which are less x− ε. Then

f(n) ≥ x− ε for all n > k. (5)

But clearly, k is the number of points which are in the rectangle [0, 1]× [0, x−ε]
in the initial state of the list. Therefore, by Definition 7,

lim
N→∞

PN

(∣∣∣∣ kN − (x− ε)

∣∣∣∣ < ε

2

)
= 1. (6)

11

But |k/N − (x− ε)| < ε/2 implies that k < N(x− ε/2), in which case n > k for
all n > N(x− ε/2). Therefore (5) and (6) imply that

lim
N→∞

PN

(
n > N

(
x− ε

2

)
=⇒ F (n) ≥ x− ε

)
= 1,

which is equivalent to (4).
Finally, (1) and (4) together imply that

lim
N→∞

PN

(
−ε

2
<

n

N
− x <

ε

2
=⇒ −ε ≤ F (n)− x ≤ ε

)
= 1,

which is equivalent to the claim of the lemma, so we are done.

Theorem 5. Consider a point X0 = (x0, y0, t0) ∈ [0, 1]3 where x0 > 1 − t0.
Then X0 is included if x0 = y0, and it is excluded if x0 ̸= y0.

Proof. Since the set of points (x, t) with x > 1− t is open, we can choose ε > 0
to be small enough that every point in the set

S =
{
(x, y, t) ∈ R3 : |x− x0| <

ε

2
, |t− t0| <

ε

2

}
.

satisfies x > 1− t. Given a uniformly generated list of N items, for every point
(x, y, t) ∈ D∩S, we have x = n/N , t = I/N , and y = H(n, I), for some natural
numbers n and I. Because x > 1− t, it must be that n > N − I, so Theorem 4
implies that y = F (n). And since |n/N − x0| < ε/2, we have by Lemma 1 that

lim
N→∞

PN (|y − x0| ≤ ε for all (x, y, t) ∈ D ∩ S) = 1. (7)

Therefore, if x0 ̸= y0, we can let ε < |y0 − x0|, so that {(x, y, t) ∈ S :
|y − x0| > ε} is an open set containing X0 that becomes arbitrarily unlikely to
contain a point from D as N → ∞. Therefore X0 is excluded by Theorem 3.

On the other hand, if x0 = y0, then (7) implies that it becomes arbitrarily
likely that each point X ∈ D ∩ S satisfies

|X−X0| =
√
(x− x0)2 + (y − y0)2 + (t− t0)2 <

√[ε
2

]2
+ ε2 +

[ε
2

]2
=

√
6

2
ε.

Since for any ε, the set D ∩ S is not empty when N is large enough, and since
ε can be made arbitrarily small, X0 is included.

We have just proved the inclusion and exclusion of points with x > 1−t, and
in Section 3 we will prove the inclusion and exclusion of points with x < 1− t.
This leaves us with x = 1 − t. Of these points, the ones with y ≤ x will be
will also be covered in Section 3, so we still need to consider those points with
y > x.

Theorem 6. If x0 = 1 − t0 and y0 > x0, then the point X0 = (x0, y0, t0) is
excluded.

12

Proof. Since the set of points (x, y) satisfying y > x is open, there is a positive
ε small enough that the point

(x1, y1) = (x0 + ε, y0 − ε)

satisfies y1 > x1. Then X0 is contained in the set

S = {(x, y, t) : x < x1, y > y1, t > 1− x1} .

Consider a list of N items. A point from D will be in S if and only if there is a
pair of natural numbers n, I such that

n < Nx1, I > N(1− x1), and H(n, I) > y1. (8)

We will show that this becomes arbitrarily unlikely as N → ∞.
Let k be the number of items that are greater than or equal to y1. Assume,

for now, that k < N(1− x1). If I > N(1− x1), then I > k, so by Corollary 1,
all of the k items which are greater than or equal to y1 are in indexes N − k
through N − 1. Thus, H(n, I) < y1 for all n < N − k. This means that, since
Nx1 < N − k, the first two conditions of (8) imply that H(n, I) < y1, so it
is impossible for all three conditions of (8) to be satisfied. Therefore, since we
started with the assumption that k < N(1− x1), we have shown that

k < N(1− x1) =⇒ X /∈ S for all X ∈ D. (9)

Now, k is clearly the number of points which start in the rectangle [0, 1] ×
[y1, 1]. Therefore, by Definition 7,

lim
N→∞

PN

(∣∣∣∣ kN − (1− y1)

∣∣∣∣ < y1 − x1

)
= 1,

which implies that
lim

N→∞
PN (k < N(1− x1)) = 1.

This combined with (9) implies that

lim
N→∞

PN (X /∈ S for all X ∈ D) = 1,

or equivalently,
lim

N→∞
PN (X ∈ S for some X ∈ D) = 0.

Therefore, S is an open set containing X0 which becomes arbitrarily unlikely to
include a point from D, so X0 is excluded.

3 The Unsorted Section: x < 1− t

We now move on to the main problem: proving that the bubble sort diagrams
approach the curved region when x < 1 − t. To do this, we will modify the

13

O
rd
in
a
ry

S
h
ea
re
d

t = 0 t = 0.2 t = 0.5

Figure 5: t-cross sections of the ordinary and sheared diagrams of a list,
plotted on the unit square.

diagram slightly by shearing it parallel to the t-axis. Then we will superimpose
rectangles onto this sheared diagram, and we will find that the number of points
which lie inside a rectangle can easily be tracked as the algorithm runs. By
choosing specific rectangles and noting at which moments they have points in
them, we will be able to determine which points are included and which are
excluded.

3.1 The Sheared Diagram

Theorem 1 gives a convenient description of how the list changes over the course
of an iteration. However, there is one inconvenient aspect about this behavior:
it has a leftward bias. Each GSF item moves one space to the left of the next
GSF item, and every non-GSF item moves one space to the left of itself. It
would be simpler if each GSF item moved directly to the position of the next
GSF item, and if each non-GSF item stayed put. To make this happen, we just
need to shift the whole list one space to the right after every iteration.

When we shift the entire list in this way, the effect on the three-dimensional
diagram is a shear transformation parallel to the t-axis. We will therefore de-
scribe these shifted lists with the word shear.

Definition 10. A sheared list of N items is a copy of a list of N items which
is shifted forward by the number of iterations that have been performed. That
is, at I iterations, the sheared list consists of the indexes I through I +N − 1,
and the item in index n of the original list is in index n+ I of the sheared list.

Definition 11. Given a sheared list at I iterations, the item in index n of the
sheared list is GSF if the item in index n− I of the original list is GSF. In this
case, we will call n a GSF index of the sheared list at I iterations.

14

8 6 1 4 7 10 5 2 9 3

6 1 4 7 8 5 2 9 3 10

1 4 6 7 5 2 8 3 9 10

Figure 6: A repeat of Figure 3, but with a sheared list rather than an or-
dinary list. Note that non-GSF items do not move, as stated in Theorem
7.

Though we use the same acronym for GSF items/indexes in the original list
and the sheared list, our meaning will be clear from context. If we begin with,
“given a sheared list,” then any mention of GSF items/indexes will be referring
to the GSF items of the sheared list, rather than the original list. We will now
restate state Theorem 1 in terms of sheared lists.

Theorem 7. Given a sheared list of N items at I iterations, let g0, g1, · · · , gk
be all the GSF indexes, ordered from least to greatest. After the next iteration,

• For all m < k, the item in index gm will move to index gm+1.

• The item in index gk will move to index N + I.

• Every non-GSF item will not move.

Definition 12. The sheared diagram of a list is the set

Ds = {(x+ t, y, t) : (x, y, t) ∈ D},

or, equivalently,

Ds =

{(
n

N
,H(n− I, I),

I

N

)
: I, (n− I) ∈ {0, 1, 2, . . . , N − 1}

}
.

Figure 5 hints at why the sheared diagram is better to work with than the
ordinary diagram: The points in the bottom left corner of the unit square remain
completely stationary as the algorithm runs. And though the right side of the
sheared diagram escapes from the unit square, there is no need to worry. The
points which lie outside the square are those for which x > 1− t in the original
diagram, and we already dealt with them in Section 2.

Definition 13. Consider a uniform method of generating lists. A point X0 is
shear-included if for all ε > 0,

lim
N→∞

PN (There is a point X ∈ Ds such that |X0 −X| < ε) = 1.

15

A point X0 is shear-excluded if there is an ε > 0 such that

lim
N→∞

PN (There is a point X ∈ Ds such that |X0 −X| < ε) = 0.

Since the mapping from the ordinary diagram to the sheared diagram is
continuous and invertible, small neighborhoods are mapped to small neighbor-
hoods. Therefore it is easy to see that the inclusion and exclusion of points is
preserved by this transformation.

Theorem 8. A point (x, y, t) is included if and only if (x + t, y, t) is shear-
included. Likewise, a point (x, y, t) is excluded if and only if (x + t, y, t) is
shear-excluded.

3.2 Counting Points in Boxes

We will analyze the sheared diagram by drawing rectangles over it and counting
the number of items in the rectangles at each iteration. It will be convenient to
only consider rectangles which are closed on the top and left, but open on the
bottom and right. For conciseness, we will call such a rectangle a box. We will
refer to the number of points inside a box as the box’s value.

Definition 14. A box is a set of the form

B = [x0, x1)× (y0, y1],

where 0 ≤ x0 < x1 ≤ 1 and 0 ≤ y0 < y1 ≤ 1.

Definition 15. Given a sheared list ofN items, the value of a boxB = [x0, x1)×
(y0, y1] at I iterations is

V (B, I) =

∣∣∣∣{(x, y, t) ∈ Ds : (x, y) ∈ B, t =
I

N

}∣∣∣∣ ,
or, equivalently,

V (B, I) =
∣∣∣{n ∈ N : x0 ≤ n

N
< x1, y0 < H(n− I, I) ≤ y1

}∣∣∣ .
If V (R, I) = 0, then we say that B is empty at I iterations.

It will be useful to describe the position of points relative to boxes. To do
this, we will use the cardinal directions north, west, and northwest.

Definition 16. Consider a box B = [x0, x1) × (y0, y1]. Let n be the index of
an item in a sheared list of N items at I iterations.

• The item is north of B if x0 ≤ n
N < x1 and H(n− I, I) > y1.

• The item is west of B if n
N < x0 and y0 < H(n− I, I) ≤ y1.

• The item is northwest of B if n
N < x0 and H(n− I, I) > y1.

16

3
2

2

4
1

2

1 Iteration

Figure 7: Three boxes on a sheared diagram before and after an itera-
tion. The changes in the values of boxes demonstrate the three cases of
Theorem 9.

We neglect east, south, and every other combination of cardinal directions
because we do not need them. This next theorem states that the change in
a box’s value depends only on whether or not there are items north, west,
or northwest of the box. This will be the key to proving that the diagrams
approach a shape because it will allow us to forget the exact state of the list,
and to instead only worry about the values of certain boxes.

Theorem 9. Let B be a box, and consider a sheared list at some number of
iterations. Over the course of the next iteration,

• the value of B will decrease by 1 if B is not empty and there are no items
north, west, or northwest of B,

• the value of B will increase by 1 if there are items both north and west,
but not northwest, of B.

• Otherwise, the value of B will not change.

Proof. Let the list be of N items, and let it be at I iterations. We will say that
any items whose index n satisfies x0 ≤ n

N < x1 is in the column of B, and we
will say that any item whose index n satisfies y0 < H(n − I, I) ≤ y1 is in the
row of B. An item is in B if and only if it is in both the row and the column of
B.

Since only GSF items move, and they all move to the position of the next
GSF item, in a single iteration it is only possible for one item to leave the
column of B, and it is only possible for one item to enter the column of B. In
particular,

• The only item which leaves the column of B is the largest GSF item in
the column of B. We will call this the leaving item. If this item exists,
it will always leave the column of B, because it moves to the position of
the next GSF item (if there is one) which is outside the column of B by

17

definition, or it moves to index N + I, which puts it outside of the column
of every possible box.

• The only item which can enter the column B is the largest GSF item whose
index is less than Nx0. We will call this the entering item. It will enter
the column of B if and only if the leaving item exists, because otherwise
there would be no GSF items in the column of B. This would imply that
the entering item passes through B and arrives at the position of the next
GSF item, or the end of the list if there is no such item, which puts it
outside the column of B.

Since items only move horizontally, the entering item only enters B if it is in
the row of B, and the leaving item only leaves B if it is in the row of B.

If there is an item northwest of B, then there must be at least one GSF item
northwest of B. This means that both the entering item and the leaving item
item – if it exists – are outside the row of B, as they are too high. Therefore,
no items enter nor leave B, and the value of B does not change.

If there is an item north of B, but there are no items northwest of B, then
there must be a GSF item north of B. This means that the leaving item exists,
but is too high to be in the row of B. Therefore, no item leaves B.

• In this case, if there is no item west of B, then the entering item cannot
be in the row of B, if it exists at all. Therefore, no item enters B, so the
value of B does not change.

• On the other hand, if there is an item west of B, then the entering item
must exist, and it must be in the row of B. Since the leaving item exists,
the entering item enters B. Thus the value of B increases by 1.

If there are no items north or northwest of B, but there is an item west of
B, then the entering item is in the row of B. If there are no GSF items in B,
then nothing enters or leaves B, so the value of B does not change. If there is
at least one GSF item in B, then the leaving item exists, and it is in the row
of B, since it cannot be north of B. Thus, an item enters B and an item leaves
B, so the value of B does not change.

Finally, if there are no items north, west, or northwest of B, then the entering
item, if it exists, is too low to be in the row of B, so no items enter B. If B
is not empty, then there is a GSF item in B, so the leaving item exists, so the
value of B decreases by 1.

We have now covered every possible case and shown that the behavior is as
described in the statement of the theorem, so the proof is complete.

This theorem has an intriguing consequence. We can partition the unit
square into a grid of boxes, and write down the value of each box in the initial
state of the list. Then we can forget the actual state of the list, and we will still
be able to perfectly track the values of the boxes as the algorithm progresses!
All we have to do is look at each box and note whether there are nonempty

18

50 Iterations

Figure 8: A 20× 20 grid of boxes, each with an initial value of 1, before
and after 50 iterations are applied. The value of the box is represented
by shading.

boxes north, west, and northwest of it. Applying the rules of Theorem 9 to each
box gives the state of the grid in the next iteration.

If we “pixelate” the diagram with a grid of equally sized boxes and assume
that each box starts with the same value, then a very clear shape emerges. This
is shown in Figure 8. Unlike the raw bubble sort diagram which is random
and uneven, this pixelated representation is perfectly symmetrical and ordered.
The hope of finding such simple rules which yield such a clear shape was what
motivated the idea of counting points in boxes in the first place. However, we
do not need the entire grid to prove which points are included and excluded.
We just need a couple results about boxes, which we will now prove.

Corollary 3. Let B be the box [0, x1)× (y0, 1]. Given a sheared list,

V (B, I) =

{
V (B, 0)− I I < V (B, 0)

0 I ≥ V (B, 0)
.

Proof. Since there cannot be any points north, west, or northwest of B, the
value of B will decrease by 1 for each iteration, until it is empty.

Corollary 4. Consider a sheared list. Let B = [x0, x1)× (y0, y1] and let B′ =
[0, x1)× (y0, 1]. If V (B, 0) > 0, then

V (B, I) > 0 for all I < V (B′, 0).

Proof. Corollary 3 applies to the boxes [0, x0) × (y0, 1] and [0, x1) × (y1, 1],
whose union is B′\B. Thus, once B′\B is empty, it will remain empty forever.
Note that B′\B consists of all the points north, west, and northwest of B. So
Theorem 9 implies that the value of B cannot decrease until B′\B is empty. It
is thus impossible for B to be empty unless B′\B, and therefore all of B′, is
empty. But by Corollary 3, B′ is not empty for any I < V (B′, 0), so neither is
B.

19

3.3 Finding Shear-Included and Shear-Excluded points

Now we are ready to find which points are shear-included and shear-excluded.
We will start with excluded points.

Theorem 10. Let X0 = (x0, y0, t0) ∈ [0, 1)× (0, 1]× (0, 1]. If x0(1− y0) < t0,
then X0 is shear-excluded.

Proof. Since the set of points (x, y, t) satisfying x(1− y) < t is open, there is an
ε > 0 which is small enough that

(x1, y1, t1) = (x0 + ε, y0 − ε, t0 − ε)

satisfies x1(1−y1) < t1. Furthermore, we can let ε be small enough that x1 < 1,
y1 > 0, and t1 > 0. Let

S = {(x, y, t) : x < x1, y > y1, t > t1}

and note that X0 ∈ S. Given a uniformly generated sheared list of N items, a
point from the sheared diagram is in S only if there is a pair of natural numbers
n, I with

n

N
< x1, H(n− I, I) > y1, and

I

N
> t1. (10)

We will show that this becomes arbitrarily unlikely as N → ∞.
Consider the box B = [0, x1) × (y1, 1]. Since the sheared list is generated

uniformly,

lim
N→∞

PN

(∣∣∣∣V (B, 0)

N
− x1(1− y1)

∣∣∣∣ < t1 − x1(1− y1)

)
= 1,

which implies that
lim

N→∞
PN (V (B, 0) < Nt1) = 1. (11)

But if we assume that V (B, 0) < Nt1, then Corollary 3 implies that B is empty
for all I > Nt1. This means that H(n − I, I) ≤ y1 for all n < Nx1. Therefore
it is impossible to satisfy all three conditions of (10). Thus (11) implies that

lim
N→∞

PN (X /∈ S for all X ∈ Ds) = 1.

Therefore, S is an open set containing X0 which becomes arbitrarily unlikely
to contain any points from the diagram as N → ∞, so X0 is shear-excluded by
Theorem 3.

Theorem 11. Let X0 = (x0, y0, t0) ∈ [0, 1)× (0, 1]× (0, 1]. If x0(1− y0) > t0,
then X0 is shear-included.

20

x(1 − y) = t0

B
X0

x(1 − y) = t0

B

B′

X0

Figure 9: A 2D representation of the box used in the proof of Theorem
10 (left), and the boxes used in the proof of Theorem 11 (right).

Proof. Since the set of points (x, y, t) satisfying x(1− y) > t is open, there is an
ε > 0 small enough that

(x1, y1, t1) = (x0 − ε, y0 + ε, t0 + ε)

satisfies x1(1− y1) > t1. We can also let

(x2, y2, t2) = (x0 + ε, y0 − ε, t0 − ε),

and we can choose ε to be small enough that x2 < 1, y1 > 0, and t0 > 0. Let

S = [x1, x2)× (y2, y1]× (t2, t1)

and let
B = [x1, x2)× (y2, y1].

A point from the sheared diagram is in S if V (B, I) > 0 for some I satisfying
t1 < I

N < t2. We will show that this becomes arbitrarily likely as N → ∞.
Let B′ = [0, x2)× (y2, 1]. If the sheared list is generated uniformly, then

lim
N→∞

PN

(∣∣∣∣V (B′, 0)
N

− x2(1− y2)

∣∣∣∣ < x2(1− y2)− t2

)
= 1,

which implies that
lim

N→∞
PN (V (B′, 0) > Nt2) = 1. (12)

If we assume that V (B′, 0) > Nt2 and V (B, 0) > 0, then Corollary 4 implies
that V (B, I) > 0 for all I < Nt2. But since B has nonzero area, it becomes
arbitrarily likely that V (B, 0) > 0 as N → ∞. This and (12), combined with
Corollary 4, imply that

lim
N→∞

PN (V (B, I) > 0 for all I < Nt0) = 1,

which in turn implies that

lim
N→∞

PN (X ∈ S for some X ∈ Ds) = 1.

21

Since for any X ∈ S, we have

|X−X0| <
√

ε2 + ε2 + ε2 = ε
√
3,

and since ε can be made arbitrarily small, it follows that X0 is shear-included.

3.4 Bringing it All Together

Theorem 12. The shape of bubble sort is the set{
(x, y, t) ∈ [0, 1]3 : y ≤ x

x+ t
, x ≤ 1− t

}
∪
{
(x, x, t) ∈ [0, 1]3 : x > 1− t

}
.

Proof. Recall that the shape of bubble sort exists if every point in [0, 1]3 is either
included or excluded, in which case it is the set of included points. Theorem
5 shows that every point (x, y, t) ∈ [0, 1]3 with x > 1 − t is either included
or excluded, and that the included points are those in the second set in the
statement of the theorem. This leaves only the points where x ≤ 1− t.

Theorem 11 states that a point is shear-included if x(1− y) > t, 0 ≤ x < 1,
0 < y ≤ 1, and 0 < t ≤ 1. This, along with Theorem 8, implies that a point is
included if

(x+ t)(1− y) > t, 0 ≤ x+ t < 1, 0 < y ≤ 1, 0 < t ≤ 1.

But from Theorem 2, the set of included points is closed. Therefore, a point is
included if

(x+ t)(1− y) ≥ t, 0 ≤ x+ t ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,

which is satisfied if

y ≤ x

x+ t
, x ≤ 1− t, (x, y, t) ∈ [0, 1]3.

These are precisely the points of the first set in the statement of the theorem.
Similarly, Theorem 10 states that a point is shear-excluded if x(1 − y) < t,

0 ≤ x < 1, 0 < y ≤ 1, and 0 < t ≤ 1. This, along with Theorem 8, implies that
a point is excluded if

(x+ t)(1− y) < t, 0 ≤ x+ t < 1, 0 < y ≤ 1, 0 < t ≤ 1.

But if y = 0 or t = 0, then it is impossible for (x + t)(1 − y) to be less than t.
Therefore, a point is excluded if

(x+ t)(1− y) < t, 0 ≤ x+ t < 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,

which is satisfied if

y >
x

x+ t
, x < 1− t, (x, y, t) ∈ [0, 1]3.

22

We have shown that every point in the unit cube with x > 1− t or x < 1− t
is either included or excluded. The only points remaining are those for which
x = 1− t and y > x/(x+ t). But these are precisely the points which Theorem 6
proves are excluded. Therefore, we have shown that every point in the unit cube
is either included or excluded, and that the included points are those described
in the statement of the theorem, so we are done.

4 Proving the Uniformity of Common Methods

We have finally proven that, if the method of generating the lists is uniform,
then the diagrams will indeed approach a certain shape. What remains is to
show that the common methods of generating lists are uniform. To do this, we
will use some standard results in probability theory. First, we will use a direct
result of the weak law of large numbers.

Theorem 13 (The Weak Law of Large Numbers). Let Zn be the sample mean
of n independent and identically distributed random variables with expected value
µ. Then

Zn
p→ µ as n → ∞.

Corollary 5. Consider an experiment which succeeds with probability p. Let
Zn be the number of successes of n independent trials. Then

Zn

n

p→ p as p → ∞.

Second, we will use the mean and variance of the hypergeometric distribu-
tion. A derivation of these values can be found in [2].

Theorem 14. Consider a collection of N items, K of which have some de-
sired property. Randomly select n of these items (without replacement), and
let Z denote the number of the selected items which have the desired property.
The random variable Z has the hypergeometric distribution, whose mean and
variance are given by

E[Z] =
nK

N
and Var(Z) =

nK(N − n)(N −K)

N2(N − 1)
.

Now, we can use the weak law of large numbers to prove that the real number
method is uniform.

Theorem 15. The real number method is uniform.

Proof. Consider a rectangle X × Y , where X and Y are nonempty intervals
within [0, 1]. Let w and h be the lengths of X and Y , respectively. Given a
natural number N , define WN to be the number of nonnegative integers n for
which n/N ∈ X. Clearly

WN

N
→ w as N → ∞. (13)

23

For each one of these WN integers, say n, a real number is chosen uniformly
from [0, 1] to be in index n of the list. The resulting point is within the rectangle
if and only if the chosen real number is in Y , which occurs with probability h.
We can label such a case as a “success”.

Therefore, the number of points in the rectangle, which we will write as ZN ,
is the number of successes of WN independent trials. Thus, by Corollay 5,

ZN

WN

p→ h as WN → ∞.

Since WN → ∞ as N → ∞, this and (13) imply that

ZN

N
=

WN

N
· ZN

WN

p→ wh as N → ∞,

so Definition 5 is satisfied. This proves that the real number method is uniform.

Theorem 16. The natural number method is uniform.

Proof. Recall that the natural number method is the process of choosing a
random permutation of the numbers 1 through N , and for each number plotting
the point

(
n
N , m

N

)
, where m is the number and n is the index of the number.

Clearly there are N possible x-coordinates and N possible y-coordinates for
points, both of which are evenly spaced across the unit square.

Consider a nondegenerate rectangle R of width w and height h contained in
the unit square. We will say an item is in the column of R if its point is in,
above, or below R, and we will say an item is in the row of R if it is in, to the
left of, or to the right of R. Given a number N , let W and H be the numbers
of items which are in the column or the row of R, respectively. Clearly

lim
N→∞

W

N
= w and lim

N→∞
H

N
= h. (14)

Define Z to be the random variable representing the number of points in R.
When we shuffle the list and count the points in R, we can think of ourselves as
randomly choosing W items to be in the column of R and counting how many
of them have the property of being in row of R. This is the process of sampling
without replacement. Therefore, by Theorem 14, the mean and variance of Z
are given by

E[Z] =
WH

N
and Var(Z) =

WH(N −W)(N −H)

N2(N − 1)
.

By applying (14) to the mean we see that

lim
N→∞

E

[
Z

N

]
= lim

N→∞
WH

N2
= wh, (15)

24

and by applying (14) to the variance we see that

lim
N→∞

Var

(
Z

N

)
= lim

N→∞
WH(N −W)(N −H)

N4(N − 1)
= 0.

That the variance converges to 0 is sufficient for the variable to converge in
probability to the limit of the mean. Therefore

Z

N

p→ wh as N → ∞.

Thus, since the choice of rectangle was arbitrary, the method is uniform.

5 Future Considerations

Since the shapes of sorting algorithm visualizations have not been rigorously
studied before, the entire world of shape-of-visualization proofs is open for ex-
ploration. Our definition of what it means for a diagram to approach a shape
can easily be modified to work with many sorting algorithms. We chose bubble
sort because its exact shape is not evident from an understanding of the algo-
rithm. However, the shapes of most well-known sorting algorithms are glaringly
obvious, and in those cases it is hard to blame one for refusing to trudge through
such a technical proof of such a self-evident result.

But there is more to the appearance of sorting algorithm visualizations than
the overall shape, and our method does not capture all the interesting details.
In particular, we identified the shape of the diagram as a set that is “filled up”
by the diagram’s points, but our method has nothing to say about the density of
the points. It is apparent from Figure 2 that the curved border of bubble sort’s
shape is far more densely-packed its body, a fact which our definition is blind
to. For bubble sort we do not consider this to be important important since its
allure lies in its overall shape, but for other sorting algorithms the density may
be the more interesting aspect. For instance, at first glance heapsort’s [6] scatter
plot appears to form a gradient in density, so a more sophisticated method will
be needed to understand it.

References

[1] Ronald M. Baecker. Sorting Out Sorting. 1980.

[2] J. R. Baxter. Introduction to Probability. John R. Baxter, 2023.

[3] Edward Friend. “Sorting on Electronic Computer Systems”. In: Journal
of the ACM 3.3 (1956), pp. 134–168. doi: https://doi.org/10.1145/
320831.320833.

[4] C. A. R. Hoare. “Quicksort”. In: The Computer Journal 5.1 (Jan. 1962),
pp. 10–16. doi: https://doi.org/10.1093/comjnl/5.1.10.

25

https://doi.org/https://doi.org/10.1145/320831.320833
https://doi.org/https://doi.org/10.1145/320831.320833
https://doi.org/https://doi.org/10.1093/comjnl/5.1.10

[5] D. E. Knuth. “Sorting by Exchanging”. In: The Art of Computer Program-
ming Volume 3: Sorting and searching. 2nd ed. Vol. 3. Addison-Wesley,
1998, pp. 105–110.

[6] J. W. J. Williams. “Algorithm 232: Heapsort”. In: Communications of the
ACM 7.6 (1964), pp. 347–348.

26

	Introduction
	A Brief History
	Bubble Sort
	Mathematically Describing Diagrams
	Uniform Methods of Generating Lists
	Mathematically Defining the Problem

	The Sorted Section: x > 1 - t
	The Unsorted Section: x < 1 - t
	The Sheared Diagram
	Counting Points in Boxes
	Finding Shear-Included and Shear-Excluded points
	Bringing it All Together

	Proving the Uniformity of Common Methods
	Future Considerations

